25 research outputs found

    Firing Rate Heterogeneity and Consequences for Coding in Feedforward Circuits

    Get PDF

    Neural Processing of Communication Signals: The Extent of Sender–Receiver Matching Varies across Species of Apteronotus

    Get PDF
    As communication signal properties change, through genetic drift or selective pressure, the sensory systems that receive these signals must also adapt to maintain sensitivity and adaptability in an array of contexts. Shedding light on this process helps us to understand how sensory codes are tailored to specific tasks. In a species of weakly electric fish, Apteronotus albifrons, we examined the unique neurophysiological properties that support the encoding of electrosensory communication signals that the animal encounters in social exchanges. We compare our findings to the known coding properties of the closely related species Apteronotus leptorhynchus to establish how these animals differ in their ability to encode their distinctive communication signals. While there are many similarities between these two species, we found notable differences leading to relatively poor coding of the details of chirp structure occurring on high-frequency background beats. As a result, small differences in chirp properties are poorly resolved by the nervous system. We performed behavioral tests to relate A. albifrons chirp coding strategies to its use of chirps during social encounters. Our results suggest that A. albifrons does not exchange frequent chirps in a nonbreeding condition, particularly when the beat frequency is high. These findings parallel the mediocre chirp coding accuracy in that they both point to a reduced reliance on frequent and rich exchange of information through chirps during these social interactions. Therefore, our study suggests that neural coding strategies in the CNS vary across species in a way that parallels the behavioral use of the sensory signals

    Temporal coding and auditory processing in the prothoracic ganglion of crickets

    Get PDF
    We used the auditory system of crickets as a model system to examine the importance of temporal coding in sensory processing. The bilaterally paired Ascending Neurons 1 and 2 (AN1 and AN2) of crickets receive inputs from the auditory receptors on one side and carry the information to the brain. We used stimuli with either conspecific-like or predator-like (i.e. bats) carrier frequency to quantify the accuracy with which the interneurons code the information contained within the amplitude modulation (AM) envelope of the stimulus. AN1, which is tuned to the dominant carrier frequency of cricket songs, selectively codes the limited range of amplitude-modulation frequencies that occur in these signals. AN2, which is most sensitive to ultrasound, serves as a "bat-detector" and codes a broader range of AM frequencies, as occur in bat calls.A striking characteristic in AN2's responses to ultrasound is the presence of bursts of high-frequency spiking separated by relatively sparse spikes. We examined the relative importance of isolated spikes and bursts in the processing of ultrasound. We showed that bursts reliably signal the occurrence of salient amplitude increases. Furthermore, we showed that burst, but not isolated spikes, reliably predict behavioural responses. We suggest AN2 encodes behaviourally important information with bursts.The Omega Neuron 1 (ON1) responds to conspecific signals and to the ultrasonic echolocation sounds. ON1's temporal coding properties vary with carrier frequency, allowing it to encode both of these behaviourally important signals. Furthermore, the temporal coding properties of ON1 in response to cricket-like sound and bat-like sound match those of AN1 and AN2 respectively.ON1 is a source of contralateral inhibition to AN1 and AN2, enhancing binaural contrast and facilitating sound localization. We used dichotic stimulation to examine the importance of the temporal structure of contralateral inhibition for enhancing binaural contrast. Contralateral inhibition degrades the accuracy with which amplitude modulation is encoded by AN 1 and AN2, but only if the temporal pattern of inhibitory input matches that of excitation. Our results show that the CF-specific coding properties of ON1 allow this single neuron to enhance localization cues most effectively for both cricket-like and bat-like acoustic signals

    Systematic Analysis of Transmitter Coexpression Reveals Organizing Principles of Local Interneuron Heterogeneity

    Get PDF
    Broad neuronal classes are surprisingly heterogeneous across many parameters, and subclasses often exhibit partially overlapping traits including transmitter coexpression. However, the extent to which transmitter coex- pression occurs in predictable, consistent patterns is unknown. Here, we demonstrate that pairwise coexpression of GABA and multiple neuropeptide families by olfactory local interneurons (LNs) of the moth Manduca sexta is highly heterogeneous, with a single LN capable of expressing neuropeptides from at least four peptide families and few instances in which neuropeptides are consistently coexpressed. Using computational modeling, we demonstrate that observed coexpression patterns cannot be explained by independent probabilities of expres- sion of each neuropeptide. Our analyses point to three organizing principles that, once taken into consideration, allow replication of overall coexpression structure: (1) peptidergic neurons are highly likely to coexpress GABA; (2) expression probability of allatotropin depends on myoinhibitory peptide expression; and (3) the all-or-none coexpression patterns of tachykinin neurons with several other neuropeptides. For other peptide pairs, the presence of one peptide was not predictive of the presence of the other, and coexpression probability could be replicated by independent probabilities. The stochastic nature of these coexpression patterns highlights the heterogeneity of transmitter content among LNs and argues against clear-cut definition of subpopulation types based on the presence of single neuropeptides. Furthermore, the receptors for all neuropeptides and GABA were expressed within each population of principal neuron type in the antennal lobe (AL). Thus, activation of any given LN results in a dynamic cocktail of modulators that have the potential to influence every level of olfactory processing within the AL

    Learning Contrast-Invariant Cancellation of Redundant Signals in Neural Systems

    Get PDF
    Cancellation of redundant information is a highly desirable feature of sensory systems, since it would potentially lead to a more efficient detection of novel information. However, biologically plausible mechanisms responsible for such selective cancellation, and especially those robust to realistic variations in the intensity of the redundant signals, are mostly unknown. In this work, we study, via in vivo experimental recordings and computational models, the behavior of a cerebellar-like circuit in the weakly electric fish which is known to perform cancellation of redundant stimuli. We experimentally observe contrast invariance in the cancellation of spatially and temporally redundant stimuli in such a system. Our model, which incorporates heterogeneously-delayed feedback, bursting dynamics and burst-induced STDP, is in agreement with our in vivo observations. In addition, the model gives insight on the activity of granule cells and parallel fibers involved in the feedback pathway, and provides a strong prediction on the parallel fiber potentiation time scale. Finally, our model predicts the existence of an optimal learning contrast around 15% contrast levels, which are commonly experienced by interacting fish

    Differences in Sodium Channel Densities in the Apical Dendrites of Pyramidal Cells of the Electrosensory Lateral Line Lobe

    Get PDF
    Heterogeneity of neural properties within a given neural class is ubiquitous in the nervous system and permits different sub-classes of neurons to specialize for specific purposes. This principle has been thoroughly investigated in the hindbrain of the weakly electric fish A. leptorhynchus in the primary electrosensory area, the Electrosensory Lateral Line lobe (ELL). The pyramidal cells (PCs) that receive inputs from tuberous electroreceptors are organized in three maps in distinct segments of the ELL. The properties of these cells vary greatly across maps due to differences in connectivity, receptor expression, and ion channel composition. These cells are a seminal example of bursting neurons and their bursting dynamic relies on the presence of voltage-gated Na+ channels in the extensive apical dendrites of the superficial PCs. Other ion channels can affect burst generation and their expression varies across ELL neurons and segments. For example, SK channels cause hyperpolarizing after-potentials decreasing the likelihood of bursting, yet bursting propensity is similar across segments. We question whether the depolarizing mechanism that generates the bursts presents quantitative differences across segments that could counterbalance other differences having the opposite effect. Although their presence and role are established, the distribution and density of the apical dendrites’ Na+ channels have not been quantified and compared across ELL maps. Therefore, we test the hypothesis that Na+ channel density varies across segment by quantifying their distribution in the apical dendrites of immunolabeled ELL sections. We found the Na+ channels to be two-fold denser in the lateral segment (LS) than in the centro-medial segment (CMS), the centro-lateral segment (CLS) being intermediate. Our results imply that this differential expression of voltage-gated Na+ channels could counterbalance or interact with other aspects of neuronal physiology that vary across segments (e.g., SK channels). We argue that burst coding of sensory signals, and the way the network regulates bursting, should be influenced by these variations in Na+ channel densit

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore